改訂化学の新演習 正誤表 4刷用

【注】「電子(を)吸引(性・力)」→「電子(を)求引(性・力)」は、どちらの表記も存在しますが後者がより適切と判断して修正しました。数が多いので正誤表には入れていません。

	ページ	問題番号など	打正行	打正前(誤)	訂正後 (正)	訂正日
本冊	16	25 (2)		〈()内冒頭に追加〉	アボガドロ定数を6.0×10 ²³ /mol,	2025/11/6
本冊	16	26 (4)	0	〈()内冒頭に追加〉	アボガドロ定数を6.0×10 ²³ /mol,	2025/11/6
本冊	51	92問題文		〈文末に追加〉	(NaOHの式量は40とする。)	2025/8/21
本冊	64	119 (3)	3行目	①式の平衡は	①式の反応は	2025/8/21
本冊	84	157	2行目	25°Cの水1L	25°C, 1.01×10 ⁵ Paにおいて水1L	2025/8/29
本冊	130	232	図	Zn	Zn ²⁺	2025/8/26
本冊	152	269 (5)	2行目	立体異性体が	シス-トランス異性体が	2025/9/2
別冊解答	99	146 解説 (1)	16行目	NH ₄	NH ₄ ⁺	2025/10/16
別冊解答	108	159 補足	2行目	[OH ₋]	[OH ⁻]	2025/8/7
別冊解答	134	194 解説 (2)	5行目の反応式右辺	AICI ₃ +3H ₂ 0	2AICI ₃ +3H ₂ 0	2025/10/28
別冊解答	220	286 解説 (1)	8行目	〈右側の構造式〉-CH ₂ -CH ₂	-CH ₂ -CH ₃	2025/8/7
別冊解答	241	310 解説	(v) の反応式	〈矢印の上〉H ₂ 0	- H ₂ 0	2025/8/7
別冊解答	249	318 解説 (1)	3番目の反応式	(CH ₃ CO) ₂	(CH ₃ CO) ₂ O	2025/8/7
別冊解答	251	320 解説	左段 (iii) の構造式	-CH(CH ₃) ₃	-CH(CH ₃) ₂	2025/8/7
別冊解答	307	373 解説 (1)	3行目	80.0	8.0	2025/10/16
別冊解答	309	376 解答 (5)		1.85g	1.9g	2025/8/26
別冊解答	310	376 解説 (5)	最終行	1.85g	1.9g	2025/8/26

<></>で囲まれた部分は以下のような文字です

下線 <u>□ </u> イタリック <i>□</i> 太字 □

上付き [□]

下付き _□

	(2) TiO ₂ の結晶を網線をつけた面で考えると,
	a=0.45nm, $b=0.30$ nm 題意より、 $\angle BDC=120^\circ$ なので、 $\triangle BDC$ は底角 30° の二等辺三角形である。
	B 30°
改訂化学の新演習 正誤表 4刷用	$\begin{array}{c} b \text{ H} \cup_{y} D \\ C 30^{\circ} \sqrt{2}a \end{array}$
	△BDHにおいて、DH: BH= $y:\frac{b}{2}=1:\sqrt{3}$ より
	$\therefore y = \frac{b}{2\sqrt{3}} = \frac{\sqrt{3}b}{6}$
	求める長さ $x = AH - DH = \frac{\sqrt{2} a}{2} - \frac{\sqrt{3} b}{6} = \frac{3\sqrt{2} a - \sqrt{3} b}{6}$
	a=0.45nm, b=0.30nmを代入すると
	$x = \frac{3 \times 1.41 \times 0.45 - 1.73 \times 0.30}{6} = 0.230 = 0.23(\text{nm})$
	b 123 (1) 5.0 (2) 0.69 mol (3) 1.6 mol (4) (\mathbb{I})
	(1) 反応溶液中に存在する未反応の CH-COOHとH-SO4(触媒)がNaOH水溶液で中和される。(加熱していないので、酢酸エチルは加水分
	解されない。)
	反応液に残った酢酸の物質量を x [mol] とすると, CH _s COOH は 1 価の酸, H ₂ SO ₄ は 2 価の酸, NaOH
	は1価の塩基なので、次式が成り立つ。 $(x\times1+1.0\times10^{-2}\times2)\times\frac{2.0}{100}=0.20\times\frac{27}{1000}\times1$
	∴ x =0.25(mol) CH ₀ COOH+C ₂ H ₀ OH \rightleftharpoons CH ₀ COOC ₂ H ₆ +H ₂ O
	次応報
 2 別冊解答 p.83 問題123 解説・解答	平衡時 0.25 0.45 0.75 0.75 [mol]
	$K = \frac{0.75 \times 0.75}{0.25 \times 0.45} = \frac{2.25}{0.45} = 5.0$
	(2) 温度が変化しなければ、 K は一定である。 酢酸 エチルが x mol 生成して平衡状態になったとすると
	$\left(\frac{x}{V}\right)^2$
	$K = \frac{\left(\frac{x}{V}\right)^2}{\left(\frac{1.0 - x}{V}\right)^2} = 5.0$
	完全平方式なので、両辺の平方根をとると、
	$\frac{x}{1.0-x} = \pm\sqrt{5} = 2.24$ (負号は捨てる)
	x=0.691≒0.69[mol] (3) 酢酸とエタノールをx[mol]ずつ反応させたと
	すると、平衡時には酢酸とエタノールが 1.0 mol ず つ反応し、酢酸エチルと水は 1.0 mol ずつ生成して
	いるから,
	$K = \frac{\left(\frac{1.0}{V}\right)^2}{\left(\frac{x-1.0}{V}\right)^2} = 3.0 \cdot \dots \cdot \oplus 1$
	$3x^{2}-6x+2=0$ $x = \frac{3\pm\sqrt{3}}{3}$
	x>1.0より、x=0.42(不適) ∴ x=1.58≒1.6[mol] [別解] ①式の左辺は完全平方式なので,両辺の平
2 別冊解答 p.83 問題123 解説・解答	方根をとり、これを解いてもよい。 $\frac{1.0}{x-1.0} = \pm \sqrt{3} \text{(負号は捨てる)}$
	$\frac{1.0}{x-1.0} = \pm \sqrt{3}$ (具有1.6(mol)) $\frac{1.0}{x-1.0} = 1.73$ $\therefore x = 1.58 \pm 1.6 \text{(mol)}$
	反応の触媒として働く。触媒は、正反応・逆反応の 速度をいずれも大きくし、平衡状態に到達するまで
	かので、平衡に数Kの値は変化しない。
	アセチレンの物質量は、 $\frac{108}{54n} \times 2n = 4.0 \text{(mol)}$
2 別冊解答 p. 306 問題372 解説 (3)	状態方程式 <i>PV=nRT</i> より,
	$V = \frac{nRT}{P} = \frac{4.0 \times 8.3 \times 10^{3} \times 300}{1.0 \times 10^{5}} = 99.6 \text{(L)}$
<u> </u>	