改訂化学の新演習 正誤表 3刷用

【注】「電子(を)吸引(性・力)」→「電子(を)求引(性・力)」は、どちらの表記も存在しますが後者がより適切と判断して修正しました。数が多いので正誤表には入れていません。

	ページ	問題番号など	訂正行	訂正前(誤)	打正後 (正)	MEE
本冊	16	25 (2)		〈()内冒頭に追加〉	アボガドロ定数を6.0×10 ²³ /mol,	2025/11/6
本冊	16	26 (4)	0	〈()内冒頭に追加〉	アボガドロ定数を6.0×10 ²³ /mol,	2025/11/6
					気体の状態方程式 <i>PV</i> = <i>w</i> / <i>M</i> × <i>RT</i> から、気体の密度	
		-1 (1)			<i>d</i> (g/L) を求める式を導け。ただし、 <i>P</i> , <i>V</i> , <i>w</i> , <i>M</i>	1
本冊	30	51 (1)		〈問題文を変更〉	- はそれぞれ気体の圧力,体積,質量、分子量を表し、 <i>T</i> は絶対温度, <i>R</i> は気体	2024/4/5
					定数とする。	
本冊	51	92問題文		〈文末に追加〉	(NaOHの式量は40とする。)	2025/8/21
本冊	59	109	グラフ	〈横軸の単位〉 10 ^{- 3}	10 ³	2025/6/17
本冊	64	119 (3)	3行目	①式の平衡は	①式の反応は	2025/8/21
本冊	66	123問題文	1行目,3行目	少量の, √3=1.73とする。	0.010mol, √3=1.73, √5=2.24とする。	2025/4/14
本冊	66	123 (1)	2行目	40mLを要した。	27mLを要した。	2025/4/14
本冊	66	123 (3)	3行目	平衡定数は2.0	平衡定数は3.0	2025/4/14
本冊	84	157	2行目	25°Cの水1L	25°C, 1.01×10 ⁵ Paにおいて水1L	2025/8/29
本冊	130	232	図	Zn	Zn ²⁺	2025/8/26
本冊	132	235	選択肢2行目	硫酸鉄(II)	塩化鉄(II)	2025/4/14
本冊	139	243	問題タイトル	ランベント・ベールの法則	ランベルト・ベールの法則	2025/2/10
本冊	152	269 (5)	2行目	立体異性体が	シス-トランス異性体が	2025/9/2
本冊	195	195 (3)		図1, 図2の	図1の	2025/7/7
本冊	205	355	表 システインの側鎖	H-S-(CH ₂) ₂ -	H-S-CH ₂ -	2024/12/24
本冊	205	355①	2行目	メチオニン	システイン	2024/12/24
本冊	216	372 (3)	2行目	〈文末に追加〉	気体定数 <i>R</i> =8.3×10 ³ Pa·L/(K·mol)) とする。	2025/6/30
別冊解答	4	4 解説 (3)	12行目	〈Fの周囲の「・」の数〉	⟨1個削除して7個に⟩	2025/4/9
	74	109 解説	3行目	A点とB点の値で	A点とB点の値(グラフの横軸は10 ³ 倍した値なので、10 ⁻³ した	2025/6/17
別冊解答					もとの値を用いる)で	
別冊解答	83	123 解答・解説		〈問題変更により全文差し替え〉	〈図版リスト:2に差し替え〉	2025/4/14
別冊解答	99	146 解説 (1)	16行目	NH ₄	NH ₄ ⁺	2025/10/16
別冊解答	106	157 解説ア	7行目	=1.21	=1.20	2024/10/30
別冊解答	108	159 補足	2行目	[OH ₋]	[OH ⁻]	2025/8/7
別冊解答	113	164 解説 (2)	1行目	Na ₂ S ₂ O ₂	Na ₂ S ₂ O ₃	2024/10/30
別冊解答	134	194 解説 (2)	5行目の反応式右辺	AlCl ₃ +3H ₂ 0	2AICI ₃ +3H ₂ 0	2025/10/28
別冊解答	170	235 解答, 解説	解答H,最終行	FeSO ₄	FeCl ₂	2025/4/14
別冊解答	171	238 解答⑥		KFe [Fe (CN)] ₆	Fe ₄ [Fe (CN) ₆] ₃	2024/10/28
Du m Az Arc	171	238 解説 (c)	2~3行目	〈反応式を変更する〉	4Fe+3K ₄ [Fe (CN) ₆] →Fe ₄ [Fe (CN)	2024/10/28
別冊解答					₆] ₃ ↓ (濃青) +12K ⁺	
別冊解答	183	249 参考 環式化合物の~	一番目の反応式	〈左辺の三員環〉OH ₂	CH ₂	2024/9/18
別冊解答	211	276 解説	右段24行目	=135 : <i>n</i> =1	=137 ∴ <i>n</i> ≒1	2024/7/10
別冊解答	220	286 解説 (1)	8行目	〈右側の構造式〉-CH ₂ -CH ₂	-CH ₂ -CH ₃	2025/8/7
別冊解答	241	310 解説	(v) の反応式	〈矢印の上〉H ₂ 0	- H ₂ 0	2025/8/7
別冊解答	249	318 解説 (1)	3番目の反応式	(CH ₃ CO) ₂	(CH ₃ CO) ₂ O	2025/8/7
別冊解答	250	318 参考〈後者〉	後ろから8行目	一且	一旦	2024/12/24
別冊解答	251	320 解説	左段 (iii) の構造式	-CH(CH ₃) ₃	-CH(CH ₃) ₂	2025/8/7
別冊解答	305	372 解答 (3)		98.5 L	99.6 L	2025/6/30
別冊解答	306	372 解説 (3)	5行目	〈差し替え〉	〈図版リスト:3に差し替え〉	2025/6/30
別冊解答	307	372 解説 (6)	反応式	CH ₂ 〈3か所〉	CH ₃	2025/7/10
別冊解答	307	373 解説 (1)	3行目	80.0	8.0	2025/10/16

	ページ	問題番号など	打正行	訂正前 (製)	訂正後 (正)	訂正日
別冊解答	309	376 解答 (5)		1.85g	1.9g	2025/8/26
別冊解答	310	376 解説 (5)	最終行	1.85g	1.9g	2025/8/26

<></>で囲まれた部分は以下のような文字です

下線 <u>□</u>

イタリック <i>□</i>

太字 □

上付き ^口

下付き _□

	(2) TiO ₂ の結晶を網線をつけた面で考えると、
1 別冊解答 p.17 問題21 解説(2)	B
	b 123 (1) 5.0 (2) 0.69 mol (3) 1.6 mol
2 別冊解答 p.83 問題123 解説・解答	(4) (エ) 解説 (1) 反応溶液中に存在する未反応の $CH_{c}COOH \succeq H_{c}SO_{4}$ (触媒) が NaOH 水溶液で中和される。 (加熱していないので、酢酸エチルは加水分解されない。) 反応液に残った酢酸の物質量を x (mol) とすると、 $CH_{c}COOH$ は 1 価の酸、 $H_{c}SO_{4}$ は 2 価の酸、 NaOH は 1 価の塩基なので、次式が成り立つ。 $ (x\times1+1.0\times10^{-2}\times2)\times\frac{2.0}{100} = 0.20\times\frac{27}{1000}\times1 $ $\therefore x=0.25$ (mol) $CH_{c}COOH+C_{c}H_{c}OH=COOC_{c}H_{c}+H_{c}OH=COOC_{c}OH_{c}OH=COOC_{c}OH=CO$
2 別冊解答 p.83 問題123 解説・解答	$K = \frac{\left(\frac{1.0}{V}\right)^2}{\left(\frac{x-1.0}{V}\right)^2} = 3.0 \cdots 0$ $3x^2 - 6x + 2 = 0$ $x = \frac{3\pm\sqrt{3}}{3}$ $x > 1.0 \text{kb}$, $x = 0.42 \left(\text{不適}\right)$ \therefore $x = 1.58 \pm 1.6 \left(\text{mol}\right)$ [別解] ①式の左辺は完全平方式なので,両辺の平方根をとり,これを解いてもよい。 $\frac{1.0}{x-1.0} = \pm\sqrt{3} (\text{負号は捨てる})$ $\frac{1.0}{x-1.0} = 1.73 \qquad \therefore x = 1.58 \pm 1.6 \left(\text{mol}\right)$ (4) 濃硫酸は脱水作用を示すとともに,エステル化反応の触媒として働く。触媒は,正反応・逆反応の速度をいずれも大きくし,平衡状態に到達するまでの時間を短縮させるが,平衡そのものは移動させないので,平衡定数 K の値は変化しない。
2 別冊解答 p.306 問題372 解説 (3)	アセチレンの物質量は、 $\frac{108}{54n} \times 2n = 4.0 \text{ [mol]}$ 状態方程式 $PV = nRT$ より、 $V = \frac{nRT}{P} = \frac{4.0 \times 8.3 \times 10^3 \times 300}{1.0 \times 10^5} = 99.6 \text{ [L]}$