改訂化学の新演習 正誤表 2刷用

【注】「電子(を)吸引(性・力)」→「電子(を)求引(性・力)」は、どちらの表記も存在しますが後者がより適切と判断して修正しました。数が多いので正誤表には入れていません。

	ページ	問題番号など	訂正行	訂正前(誤)	訂正後 (正)	打正日
本冊	16	25 (2)		〈()内冒頭に追加〉	アボガドロ定数を6.0×10 ²³ /mol,	2025/11/6
本冊	16	26 (4)	0	〈()内冒頭に追加〉	アボガドロ定数を6.0×10 ²³ /mol,	2025/11/6
l					気体の状態方程式 <i>PV</i> = <i>w</i> / <i>M</i> × <i>RT</i> から、気体の密度	
		E4 (4)		(PB 05 + + +)	<i>d</i> (i>d(g/L)を求める式を導け。ただし、 <i>P</i> 、 <i>V</i> 、 <i>V</i> 、 <i>W</i> 、 <i>M</i>	
本冊	30	51 (1)		〈問題文を変更〉	はそれぞれ気体の圧力,体積,質量、分子量を表し、 <i>T</i> は絶対温度, <i>R</i> は気体	2024/4/5
					定数とする。	
本冊	36	63 (3)		〈文末に追加〉	(気体定数 <i>R</i> =8.3×10 ³ Pa・L/(K・mol)))	2024/4/5
本冊	40	73	6行目	〈文末に追加〉	(気体定数 <i>R</i> =8.3×10 ³ Pa·L/(K·mol))	2024/6/14
本冊	42	76 (4)		〈文末に追加〉	(気体定数 <i>R</i> =8.3×10 ³ Pa・L/(K・mol)))	2024/8/5
本冊	47	85	13行目	求める。	求めよ。	2024/8/5
本冊	47	86	8行目	〈文末に追加〉	(気体定数 <i>R</i> =8.3×10 ³ Pa・L/(K・mol)))	2024/8/5
本冊	51	92問題文		〈文末に追加〉	(NaOHの式量は40とする。)	2025/8/21
本冊	58	108 (1)	1~2行目	反応物の濃度 <i>C</i> の変化する速さ	ョウ化水素の分解速度-	2024/5/28
本冊	59	109	グラフ	〈横軸の単位〉10 ⁻³	10 ³	2025/6/17
本冊	59	110	10行目	〈()内末尾に追加〉	<i>R</i> : 気体定数 (8.3J/(K・mol))	2024/7/29
			1011	(() () () () () () () () () (下表は、右図のような装置を用いた鉄(III)イオンを触媒とする過酸化水素の分解反応で発生	
本冊	60	111	1~4行目	〈問題文を変更〉	する酸素の体積から、過酸化水素水のモル濃度[H ₂ 0 ₂ 1	2024/8/19
77-110					よる変化を求めたものである。	
本冊	64	118	7行目	〈文末に追加〉	(気体定数 <i>>R</i> =8.3×10 ³ Pa·L/(K·mol)))	2024/8/5
本冊	64	119 (3)	3行目	①式の平衡は	①式の反応は	2025/8/21
本冊	66	123問題文	1行目,3行目	少量の, √3=1.73とする。	0.010mol, √3=1.73, √5=2.24とする。	2025/4/14
本冊	66	123 (1)	2行目	40mLを要した。	27mLを要した。	2025/4/14
本冊	66	123 (3)	3行目	平衡定数は2.0	平衡定数は3.0	2025/4/14
本冊	67	125	2行目	〈文末に追加〉	(気体定数 <i>>R</i> =8.3×10 ³ Pa・L/(K・mol)))	2024/8/5
本冊	67	126 (2)	5行目	〈文末に追加〉	(気体定数 <i>R</i> =8.3×10 ³ Pa・L/(K・mol)))	2024/8/5
			ページ欄外	〈ページ左上に追加〉	問題130, 131で, 必要があれば, 水のイオン積[H ⁺] [OH ⁻]	2024/5/2
本冊	71				=1.0×10 ⁻¹⁴ (mol/L) ² を用いよ。	
本冊	72	132	11行目	下の(3)	下の(4)	2024/5/20
本冊	72	132 (2)		モル溶液	モル濃度	2024/5/20
		. , ,			問題136~139で、必要があれば、水のイオン積[H ⁺] [OH ⁻]	
本冊	74		ページ欄外	〈ページ右上に追加〉	=1.0×10 ⁻¹⁴ (mol/L) ^{を用いよ。}	2024/5/2
本冊	84	157	2行目	25°Cの水1L	25°C, 1.01×10 ⁵ Paにおいて水1L	2025/8/29
本冊	85	159 (3)	2行目	(mol/L)	(mol/L) ⁻¹	2024/8/2
本冊	86	161	1行目	[A] ~ [C] の各実験を	[A] ~ [D] の各実験を	2024/6/19
本冊	101	187 (6)	3行目	〈文末に追加〉	(ファラデー定数 <i>F</i> =9.65×10 ⁴ C/mol)	2024/8/5
本冊	130	232	図	Zn	Zn ²⁺	2025/8/26
本冊	132	235	選択肢2行目	硫酸鉄(II)	塩化鉄 (II)	2025/4/14
本冊	139	243	問題タイトル	ランベント・ベールの法則	ランベルト・ベールの法則	2025/2/10
本冊	140	244 (3)	1~2行目	それぞれ何種類の立体異性体が	立体異性体を含めてそれぞれ何種類の異性体が	2024/9/3
本冊	151	268	3行目	炭素原子には	炭素原子に	2024/7/31
本冊	152	269 (5)	2行目	立体異性体が	シス-トランス異性体が	2025/9/2
本冊	195	195 (3)		⊠1, ⊠2 <i>0</i>	図1の	2025/7/7
本冊	205	355	表 システインの側鎖	H-S-(CH ₂) ₂ -	H-S-CH ₂ -	2024/12/24
本冊	205	355①	2行目	メチオニン	システイン	2024/12/24
本冊	209	361	問題タイトル	トレオニン・酒石酸の立体異性体	トレオニンの立体異性体	2024/7/31

	ページ	問題番号など	訂正行	打正前(誤)	訂正後 (正)	打正日
本冊	216	372 (3)	2行目	〈文末に追加〉	気体定数 <i>R</i> =8.3×10 ³ Pa·L/(K·mol)) とする。	2025/6/30
本冊	370	370	10~11行目	凝固させる	塩析する	2024/8/19
本冊	217	373	9行目	〈文末に追加〉	(気体定数 <i>R</i> =8.3×10 ³ Pa·L/(K·mol)))	2024/8/5
別冊解答	2	1 解説 (4)④	全文	同族元素のイオン半径は、原子半径と同様に説明できるが、同周期元素では、ふつう1、2、13 族元素はその周期の1 つ前の周期の貴ガスの電子配置をもつ陽イオンになるので、この順にイ オン半径は小さくなる。16、17 族元素はその周期の貴ガスの電子配置をもつ陰イオンになるの で、この順にイオン半径は大きくなる。つまり、原子番号とイオン半径は一定の傾向を示さな い。	同族元素のイオン半径は、原子半径と同様に説明できる。一方、同周期元素では、1, 2, 13族元素はその周期の1つ前の周期の貴ガスの電子配置をもつ陽イオンになるともとの原子半径よりも小さくなる。16, 17族元素の原子はその周期の貴ガスの電子配置をもつ陰イオンになるともとの原子半径よりも大きくなる。つまり、原子番号とイオン半径は一定の傾向を示さない。	2024/4/2
別冊解答	4	4 解説 (3)	12行目	⟨Fの周囲の「・」の数⟩	〈1個削除して7個に〉	2025/4/9
別冊解答	17	21 解説 (2)		〈全文差し替え(補足は削除)〉	〈図版リスト:1に差し替え〉	2024/5/3
別冊解答	28	40 解説 (3)	7行目	(mol)	(/mol)	2024/4/29
別冊解答	28	40 参考	23行目	〈数式中の数字2か所〉4	8	2024/4/29
別冊解答	43	65 解答(3)		5.6g	5.7g	2024/5/8
別冊解答	43	65 解説 (2)	4・9行目	52.4	52.38	2024/5/8
別冊解答	43	65 解説 (2)	10行目	42.88	42.85	2024/5/8
別冊解答	43	65 解説 (3)	5行目	52.4	52.38	2024/5/8
別冊解答	43	65 解説 (3)	6行目	5.6	5.72≒5.7	2024/5/8
別冊解答	60	89 解答 (4)	反応式左辺	50 ₂	50 ₂ (気)	2024/9/3
別冊解答	73	107 解答 (4)		O ₂ の生成速度0.080mol/L・分	O ₂ の生成速度0.0794mol/L・分	2024/5/30
別冊解答	73	107 解説 (2)	2行目	<i>k</i> = 0.294 (/分)	<ibox <i="" =""> = 0.2941 ≒ 0.294 (/分)</ibox>	2024/5/30
別冊解答	73	107 解説 (3)	1行目	= 0.294 × 0.540 = 0.159	= 0.2941 × 0.540 = 0.1588 \(= 0.159 \)	2024/5/30
別冊解答	73	107 解説 (4)	5行目	0.5である。	0.5 £ 9,	2024/5/30
別冊解答	73	107 解説 (4)	6行目	NO ₂ の生成速度 0.159×2=0.318 (mol/L・分)	<pre><i><i>v</i>_{NO₂}</i></pre>	2024/5/30
別冊解答	73	107 解説 (4)	7行目	O ₂ の生成速度 0.159×0.5=0.080 (mol/L・分)	ci>v _{O₂}	2024/5/30
別冊解答	74	108 解答 (1)		<pre><i>dC</i>/<i>dt</i></pre> <pre><i>dC</i></pre> <pre><ipdc< pre=""></ipdc<></pre>	- <i>dC</i> / <i>dt</i>	2024/5/30
別冊解答	74	108 解説 (1)	2~3行目	反応物の濃度 <i>C</i>	ヨウ化水素の分解速度-	2024/5/30
別冊解答	74	109 解説	3行目	A点とB点の値で	A点とB点の値(グラフの横軸は10 ³ 倍した値なので、10 ⁻³ したもとの値を用いる)で	2025/6/17
別冊解答	83	123 解答・解説		〈問題変更により全文差し替え〉	〈図版リスト:2に差し替え〉	2025/4/14
別冊解答	90	132 解説 (2)	7行目	モル溶液	モル濃度	2024/5/20
別冊解答	97	142 解説 (1)	6行目の反応式右辺	H ₂ 0	NaCl	2024/8/21
別冊解答	99	146 解説 (1)	16行目	NH ₄	NH ₄ ⁺	2025/10/16
別冊解答	101	148 解説 (1)	7行目	〈 [H ⁺] から始まる式の末尾に追加〉	·····①	2024/8/19
別冊解答	106	157 解説ア	7行目	=1.21	=1.20	2024/10/30
別冊解答	108	159 補足	2行目	[OH ₋]	[OH ⁻]	2025/8/7
別冊解答	110	161 解説 (1) ~ (3) [D]	7行目の反応式右辺	Mn ²⁺	2Mn ²⁺	2024/7/29
別冊解答	112	163 解説	12行目	NaC ₂ 0 ₄	Na ₂ C ₂ O ₄	2024/6/19
別冊解答	112	163 解説 (2)	5行目	KMnO ₄ ⁻	KMnO ₄	2024/5/20
別冊解答	112	163 解説 (2)	7行目	C ₂ 0 ₄ ^{2 -}	Na ₂ C ₂ O ₄	2024/5/20
別冊解答	113	164 解説 (1)	4行目の反応式右辺	0 ₂ +2H ₂ 0	0 ₂ + H ₂ 0	2024/4/7
別冊解答	113	164 解説 (2)	1行目	Na ₂ S ₂ O ₂	Na ₂ S ₂ O ₃	2024/10/30
別冊解答	115	168 解説(2)	10行目の反応式	20 ₂ 0 ₃ +2e ⁻ S ₄ 0 ₆ ²⁻	20 ₂ 0 ₃ <-→ S ₄ 0 ₆ <-+2e ⁻	2024/8/20
別冊解答	134	194 解説 (2)	5行目の反応式右辺	AICI ₃ +3H ₂ 0	2AICl ₃ +3H ₂ 0	2025/10/28
別冊解答	140	200 解答 (3) (b)		褐色	黒褐色	2024/4/5
別冊解答	170	235 解答, 解説	解答H,最終行	FeSO ₄	FeCI ₂	2025/4/14
別冊解答	171	238 解答⑥		KFe [Fe (CN)] ₆	Fe ₄ [Fe (CN) ₆] ₃	2024/10/28

	ページ	問題番号など	訂正行	訂正前 (製)	訂正後(正)	打正日
別冊解答	171	220 62=4 (-)	2 24=1	/ C c + + + +	4Fe+3K ₄ [Fe (CN) ₆] →Fe ₄ [Fe (CN)	2024/10/20
別冊所合	171	238 解説 (c)	2~3行目	〈反応式を変更する〉	₆] ₃ ↓ (濃青) +12K ⁺	2024/10/28
別冊解答	175	243 解答 (3)		<i>C</i> =3.0 × 10 ⁻⁶ (mol/L)	<i>C=3.0 × 10 ⁻⁸ (mol/L)	2024/7/23
別冊解答	176	243 解説 (3)	8行目	<i>C</i> =3.0 × 10 ⁻⁶ (mol/L)	<i>C</i> =3.0 × 10 ⁻⁸ (mol/L)	2024/7/23
別冊解答	183	249 参考 環式化合物の~	一番目の反応式	〈左辺の三員環〉OH ₂	CH ₂	2024/9/18
					つまり, この油脂1molに付加しうるI ₂ は6molである。また, 定義より, 油脂	
別冊解答	195	261 解説 (2) (ii)		〈文末に追加〉	100gに付加しうるI ₂ (分子量254)のグラム数がヨウ素価であるから,	2024/7/31
					$(100/878) \times 6 \times 254 = 174$	
別冊解答	211	276 解答 (3)	1番目の反応式	〈行頭に追加〉	(1)	2024/7/31
別冊解答	211	276 解説	10行目	アセントが生成する。	アセトンが生成する	2024/4/5
別冊解答	211	276 解説	右段24行目	=135 : <i>n</i> =1	=137 ∴ <i>n</i> ≒1	2024/7/10
別冊解答	216	282 解説 (2)	3番目の反応式	〈(副)の化合物の構造式〉	〈*を削除する〉	2024/7/26
別冊解答	220	286 解説(1)	8行目	〈右側の構造式〉-CH ₂ -CH ₂	-CH ₂ -CH ₃	2025/8/7
別冊解答	230	299 解答 (2)		アルキド樹脂	グリプタル樹脂(アルキド樹脂)	2024/4/12
別冊解答	231	299 解説 (2)	反応式の説明文	アルキド樹脂	グリプタル樹脂	2024/4/12
別冊解答	231	300 補足	(b) の反応式	〈2番目,3番目の化合物の構造式〉	〈1番目の化合物と同じ位置にCを追加する〉	2024/7/17
別冊解答	241	310 解説	(v) の反応式	〈矢印の上〉H ₂ 0	- H ₂ 0	2025/8/7
別冊解答	249	318 解説(1)	3番目の反応式	(CH ₃ CO) ₂	(CH ₃ CO) ₂ O	2025/8/7
別冊解答	250	318 参考〈後者〉	後ろから8行目	一且	<u>−B</u>	2024/12/24
別冊解答	251	320 解説	左段(iii)の構造式	-CH(CH ₃) ₃	-CH(CH ₃) ₂	2025/8/7
別冊解答	259	327 参考	5,7行目	ヒドロキシケトン基	α-ヒドロキシケトン基〈2か所〉	2024/8/19
別冊解答	276	341 解説 硫黄反応	6行目	メチオニンでも呈色するが、	メチオニンの	2024/8/19
別冊解答	289	356 解答 (1)		-Gys-	-Cys-	2024/7/31
別冊解答	305	372 解答 (3)		98.5 L	99.6 L	2025/6/30
別冊解答	306	372 解説 (3)	5行目	〈差し替え〉	〈図版リスト:3に差し替え〉	2025/6/30
別冊解答	307	372 解説 (6)	反応式	CH ₂ 〈3か所〉	CH ₃	2025/7/10
別冊解答	307	373 解説 (1)	3行目	80.0	8.0	2025/10/16
別冊解答	309	376 解答 (5)		1.85g	1.9g	2025/8/26
別冊解答	310	376 解説 (5)	最終行	1.85g	1.9g	2025/8/26
別冊解答	318	383 参考 光透過性高分子	2行目	結晶しにくい	結晶化しにくい	2024/7/31

<></>で囲まれた部分は以下のような文字です

下線 <u>□ </u>
イタリック <i>□ </i>
太字 □
上付き [□]
下付き _□

	(2) TiO ₂ の結晶を網線をつけた面で考えると、
1 別冊解答 p.17 問題21 解説(2)	B
	b 123 (1) 5.0 (2) 0.69 mol (3) 1.6 mol
2 別冊解答 p.83 問題123 解説・解答	(4) (エ) 解説 (1) 反応溶液中に存在する未反応の $CH_{c}COOH \succeq H_{c}SO_{4}$ (触媒) が NaOH 水溶液で中和される。 (加熱していないので、酢酸エチルは加水分解されない。) 反応液に残った酢酸の物質量を x (mol) とすると、 $CH_{c}COOH$ は 1 価の酸、 $H_{c}SO_{4}$ は 2 価の酸、 NaOH は 1 価の塩基なので、次式が成り立つ。 $ (x\times1+1.0\times10^{-2}\times2)\times\frac{2.0}{100} = 0.20\times\frac{27}{1000}\times1 $ $\therefore x=0.25$ (mol) $CH_{c}COOH+C_{c}H_{c}OH=COOC_{c}H_{c}+H_{c}OH=COOC_{c}OH_{c}OH=COOC_{c}OH=CO$
2 別冊解答 p.83 問題123 解説・解答	$K = \frac{\left(\frac{1.0}{V}\right)^2}{\left(\frac{x-1.0}{V}\right)^2} = 3.0 \cdots 0$ $3x^2 - 6x + 2 = 0$ $x = \frac{3\pm\sqrt{3}}{3}$ $x > 1.0 \text{kb}$, $x = 0.42 \left(\text{不適}\right)$ \therefore $x = 1.58 \pm 1.6 \left(\text{mol}\right)$ [別解] ①式の左辺は完全平方式なので,両辺の平方根をとり,これを解いてもよい。 $\frac{1.0}{x-1.0} = \pm\sqrt{3} (\text{負号は捨てる})$ $\frac{1.0}{x-1.0} = 1.73 \qquad \therefore x = 1.58 \pm 1.6 \left(\text{mol}\right)$ (4) 濃硫酸は脱水作用を示すとともに,エステル化反応の触媒として働く。触媒は,正反応・逆反応の速度をいずれも大きくし,平衡状態に到達するまでの時間を短縮させるが,平衡そのものは移動させないので,平衡定数 K の値は変化しない。
2 別冊解答 p.306 問題372 解説 (3)	アセチレンの物質量は、 $\frac{108}{54n} \times 2n = 4.0 \text{ [mol]}$ 状態方程式 $PV = nRT$ より、 $V = \frac{nRT}{P} = \frac{4.0 \times 8.3 \times 10^3 \times 300}{1.0 \times 10^5} = 99.6 \text{ [L]}$