3版化学の新研究 正誤表 2刷用

【注】「電子(を)吸引(性・力)」→「**圏**子(を)求引(性・力)」は、どちらの表記も存在しますが後者がより適切と判断して修正しました。数が多いので正誤表には入れていません。

ページ	問題番号など	訂正行	訂正前(誤)	訂正後(正)
表紙裏	元素の周期表	オスミウムOsの密度	22.57	22.59
表紙裏	元素の周期表	イリジウムIrの密度	22.61	22.56
99	5	4行目	1個ずつ教えること	1個ずつ数えること
200	1 詳説3	1行目	分散質には液体と固体のものしか存在しない。	分散質に気体のものは存在しない。
215	2	7~8行目	H ₂ 0 1mol	H ₂ 0 2mol
	5 補足11	5~10行目	強酸と弱塩基,および~ただし,酢酸は例外である。	弱酸や弱塩基のかかわる中和反応では、弱酸・弱塩基の電
219				離が吸熱反応であるため、中和エンタルピーは強酸・強塩
				基の中和エンタルピー (-56.5kJ/mol) より大きな値とな
				る。(絶対値が小さくなる)。ただし,酢酸は例外であ
				వ .
219	5 参考	3行目	56.5kJ/mol	-56.5kJ/mol
238	2 ▶段落	12~13行目	~1:1:2となる。したがって,~となる ^②	~1:1:2となる ^② 。この関係は,反応速
238			。	度の単位が同じ場合にのみ成り立つ。
247	[Science Box]	例題〈後者〉6行目	¹³⁸ Ba	¹³⁷ Ba
255	7	4~5行目	少量でも反応速度を変化させる	その反応速度を大きくする
255	7 詳説14		〈全文差し替え〉	〈図版リスト:1に差し替え〉
330	15 □1	3,5行目	NaCO ₃ 〈2か所〉	Na ₂ CO ₃
357	3 例題 [解]	最後の反応式	→ Cu (NO ₃) ₂	→ 3Cu (NO ₃) ₂
368	[Science Box]	右段下から7,9行目の計算式の右辺	=2.50 × 10 < sup>-5 < / sup>	=2.50 × 10 ⁻⁴
380	[Science Box]	表の右上	- は発熱,- は吸熱を示す。	- は発熱,+は吸熱を示す。
382	3 □3 補足10	9行目	3Pt+4HNO ₃ +18HCl →	Pt+2HNO ₃ +8HCl →
			3H ₂ [PtCl ₆] +4NO+	H ₂ [PtCl ₆] +2NO+
			8H ₂ 0	4H ₂ 0+Cl ₂
398	16	15行目	電解液の濃度が変化しない	電解液の濃度がほとんど変化しない
451	7(訂正後8)	1行目	7 硫酸の性質	8 硫酸の性質

ページ	問題番号など	訂正行	訂正前(誤)	訂正後(正)
626	例題	下から4行目	A··· (CH ₃) ₃ CHOH	A··· (CH ₃) ₃ COH
670	[Science Box]	左段15~16行目	脂肪酸の分解も $-COOH$ の β 位の炭素から、アセチル	脂肪酸の分解は, α 位と β 位の間の結合が切れ,アセ
			CoAとして切り取られていく。	チルCoAの形で順番に切り取られていく。
670	[Science Box]	左段18行目	〈構造式上部の数字に対応する下部のギリシャ文字〉	1-〈削除〉 2-α 3-β 4-γ 5-δ
			$1-\alpha$ $2-\beta$ $3-\gamma$ $4-\delta$ $5-\varepsilon$	
688	5	1行目の反応式	安息香酸(沸点123℃)	安息香酸(融点123°C)
727	6 参考	5行目	〈反応式矢印の下〉50~60°C	〈削除〉
814	8 □3 詳説20		〈全文差し替え〉	〈図版リスト:3に差し替え〉
858	[Science Box]	右段9行目	<i>o</i> 位,または <i>p</i> 位に対して,	<i>o</i> 位, <i>p</i> 位電子密度が高く,
	索引		N-グリコシド結合 829,833,670	N-グリコシド結合 829,833
ŀ			n-3系 867	n-3系 670
			NBR 796	NBR 867
881			N-末端 670	N-末端 796
			n-6系 864	n-6系 670
			エネルギー弾性 606	エネルギー弾性 864
			エノール 618,711,713	エノール 606,618,713
887	索引	2段目29行目	正触媒 255	〈削除〉
891	索引	4段目6行目	負触媒 255	〈削除〉

<></>で囲まれた部分は以下のような文字です 下線 <u>□ </u>

イタリック <i>□</i>

太字 □

上付き [□]

下付き _□

お使いの刷数によっては、修正済みのものも含まれています。(正誤表をご覧ください。)					
1:p.255 詳説14	野説 $full H_2O_2$ の分解反応における Fe^{3+} の触媒作用は次式で表される。 H_2O_2 (還元剤) $+ 2 Fe^{3+} \longrightarrow O_2 + 2 Fe^{2+} + 2 H^+ \cdots $ $O_2 + 2 Fe^{2+} + $				
2:p.433 補足22	編定 SiO ₂ はフッ化水素酸 HF には溶けるが、フッ化ナトリウム NaF やフッ化アンモニウム NH ₄ F 水溶液には溶けないことから、SiO ₂ を攻撃する主役はフッ化物イオン F ではなく、次式で生成する二フッ化水素イオン HF ₂ ⁻ (HF と F ⁻ が水素結合で会合したイオン)と考えられている。 2 HF → H ⁺ + HF ₂ ⁻ が攻撃して、新たに Si-F 結合ができると、HF ₂ ⁻ 中の水素結合が切れて HF が脱離する。一方、背後にある Si-O 結合の O ⁸ - には H ⁺ が結合して OHとなり、点線部分で Si-O 結合が切れる。この反応の繰り返しによって SiF ₄ を生成する。水溶液中ではさらに 2 分子の HF が配位結合して、水溶性のヘキサフルオロケイ酸イオン [SiF ₆] 2- という錯イオンとなる。これをふつうヘキサフルオロケイ酸 H ₂ SiF ₆ (強酸)として表す。なお、フッ化水素酸はガラスを溶かすため、ポリエチレン容器に保存しなければならない。				
: p.814 詳説20	学記 システインに濃 NaOH 水溶液を加えて加熱すると、塩基の OH がシステインのカルボニル基に隣接する α 位の H を H ⁺ として引き抜いた後、電子の移動が起こると、デヒドロアラニン(アラニンから脱水素された非天然型アミノ酸)と硫化水素イオン HS を生じる。 HS は直ちに中和されて S ²⁻ となり、Pb ²⁺ と反応し PbS の黒色沈殿を生じる。 COOH COOH COOH OH H ⁺ - C ⁻ - CH ₂ - SH \longrightarrow C = CH ₂ + HS NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ \times チオニンの場合、システインと同様の反応が起こると、デヒドロアラニンと硫化ジメチル (CH ₃) $_2$ S を生じる。 ただし、硫化ジメチルから S ²⁻ を脱離させるためには、NaOH 水溶液との加熱では困難であり、より高温となる NaOH 融解液との反応が必要となる。 COOH OH H ⁺ - C - CH ₂ - CH ₂ - S - CH ₃ \longrightarrow C = CH ₂ + CH ₃ - S - CH ₃ NH ₂				